

SignalTEK II

版权说明

本文档所包含的信息是美国理想工业公司 (IDEAL INDUSTRIES Ltd.) 的财产,对于本文档中出现的错误或遗漏,提供方概不负责。除非得到美国理想工业公司的合同授权或其他书面许可,否则,本文档的任何部分均不得复制或使用。版权和对复制和使用的所有限制都适用于本信息发布的一切媒介。

美国理想工业公司奉行持续改进产品的政策,并保留在不事先通知的情况下变更任何产品或服务的规格、设计、价格或供货条件的权利。

© IDEAL INDUSTRIES LTD. 2014

保留所有权利 出版参考号: 156816 第3版 第3版 - 07/14 (适用于软件版本 1.0.9及以上版本)

> IDEAL INDUSTRIES LTD. Stokenchurch House Oxford Road Stokenchurch High Wycombe Buckinghamshire HP14 3SX UK

www.idealnwd.com

目录

简介	4
SignalTEK II 的保养	5
	5
安全信息	5
连接器安全性	5
▲须 ····································	6
由源模址管理	6
电调模也会中	0 6
电冰侠头尤电	00 G
巴他组 工户和子闩	0
月	1
自电	1
土机复位	1
手持设备控件、指示器和端口	8
采甲导航	9
软键	9
数据输入	9
入门	10
操作模式	10
线缆	10
以太网	10
端口	12
可更换的插入件 - RJ-45 插口	12
设置	
公里。	14
发量术 中	17
义为的 OF 农汉研	10
例以佚八	
	10
	18
测试 一 运行、 设直和保仔	19
测试采单说明 - 线缆模式	20
接线图	20
音频	23
自动测试	23
测试菜单说明 — 以太网模式	24
线缆性能	24
PoE	25
端口检测	25
Pina4 和 Pina6	26
路由跟踪 4 和路由跟踪 6	26
网络扫描	.27
VolP	28
Weh	20
如蛎	20
代例	29
	29
11 业	
(現用作业采単	31
史	31
官埋作业	32
生成报告	33
规格 — SignalTEK II	34
近端设备	34
远端设备	49
术语、缩写词和缩略语	54

简介

SignalTEK II 包含两台手持设备和一套标准配件,全部存放在半硬质工具箱中。

目前提供两种型号: SignalTEK II 和 SignalTEK II FO。二者的测试范围相同。SignalTEK II 可采用 RJ45 端 口连接; SignalTEK II FO 可采用 RJ45 端口和光纤连接。

图 1 SignalTEK II 组件

近端设备是所有测试运行和存储的终端。远端设备是启用性能测试的环回终端。近端设备和远端设备已配对。连接到相同网络时,近端设备会查找与其唯一配对的远端设备,而不是其他任何可能连接到同一网络的 SignalTEK II 远端设备。

近端设备可作为独立装置进行铜网络线缆的接线图测试。当两个设备通过线缆直接连接时,可以运行接线图测试和线缆性能测试。当近端设备连接到网络时,可用于执行一系列 IP 测试。当近端和远端设备都连接到活动网络时,可执行 IP 测试和网络性能测试。

本手册描述了 SignalTEK II FO 的操作和功能。如果您使用的是 SignalTEK II,请忽略与光纤有关的所有内容。

SignalTEK II 的保养

SignalTEK II 轻便小巧,但坚固耐用,适用于在受保护的户外工作环境中操作。

为确保可靠的工作:

- 避免温度过高或过低 SignalTEK Ⅱ 设计在 0°C 到 +40°C 的温度范围内工作,但电池充电只能在 +10°C 到 +30°C 的温度范围内进行。您可以在 -20°C 到 +70°C 的温度范围内安全贮存设备。
- 为避免损坏,我们建议您在不用 SignalTEK II 设备时将它们保存在原装工具箱内。
- 切勿使用溶剂、强力清洁剂或磨料来清洁 SignalTEK Ⅱ。只能使用批准用于 ABS 和聚碳酸酯塑料的 清洁剂。

弃置

当 SignalTEK II 已达到使用寿命时,您必须依照当地的环境法规完全弃置这两个设备。

电源模块必须完全充电后才能使用它的第一次

安全信息

使用 SignalTEK II 时,请务必采取基本的安全防护措施,降低火灾、电击和人员受伤的风险。这些措施包括:

- 连接到线缆时,必须特别小心,因为线缆上可能存在高压,并且可能存在触电死亡的危险。
- 避免在暴风雨天气下使用 SignalTEK II 一 存在被闪电击中的风险。
- 只使用您的 SignalTEK II 随附的总线电源适配器。

1 类激光产品。来自光纤端口的光输出虽然不可见,但可能会损害视力。切勿凝视打开的光链路端口或光纤 末端确认是否有光线射出。

连接器安全性

以下连接器符合 EN60950 SELV 安全状况:

- RJ-45 以太网端口。
- USB 端口。
- DC 插口。

切勿将任何电信网络连接到测试仪的任何端口。

电源

SignalTEK II 可采用以下电源:

- 可充电电源模块。
- 连接到电源模块内置 DC 插口的直接电源。
- 碱性电池组。

标准配备的模块或电池组类型取决于购买的型号。

电源模块管理

充满电的电源模块将支持最长五小时的高强度、连续使用。为最大限度地延长电源模块的使用寿命,建议每月至少进行一次完全放电后完全充电。

用户不可自行维修电源模块。当它达到使用寿命时,请联系您当地的 IDEAL 代表进行维护。

电源模块充电

电源模块可在 SignalTEK II (任一设备) 开启或关闭的情况下在三小时内充满。要对电池模块充电,将随附的电源适配器连接到 DC 插口。为方便起见,充电时可将电源模块取出或继续连接到设备上。DC 插口旁的电源 LED 灯发出绿光,表明电池正在充电,绿灯闪烁时表明未充电。

近端设备电源模块的充电状态包括满电量、2/3、1/3 和空电量,通过 LCD 显示屏顶部信息栏内的电量图标显示。

图 2 电源指示

远端设备电源模块的充电状态通过 Autotest (自动测试)键下的 LED 灯直接指示。LED 灯指示包括:

电源 LED	状态
绿色	电源开启。电池电量充足
红色	电源开启。电池电量低,但仍能工作
关	电源关闭

电池组

电池组可容纳四节可更换的5号碱性电池。这些电池不能充电。

开启和关闭

要开启设备,按下开关按钮。显示屏上会出现开机启动画面,显示 IDEAL 徽标和型号名称。近端设备尝试 检测网络和远端设备。随后首页画面将出现在显示屏上。SignalTEK II 准备就绪。

要关闭任一设备,按住电源按钮约 1/2 秒,屏幕上将显示关机消息。当前存储的设置将保存。如设备未在五秒内关闭,请参见*主机复位*。在取出电池组或电源模块前务必要关闭设备。

警告

设备开启时切勿取出电池组或电源模块。

省电

<u>近端设备</u>。从"设置">"系统">"选项"选择省电选项。可以禁用自动关闭功能(设备一直处于开启状态),或设置为在 3、10 或 30 分钟无操作后关闭。背光可设置为"一直开着",或在三分钟无操作后将亮度下调 50%。请注意,在连接主电源后,显示屏将始终以最大亮度显示,且设备一直处于开启状态。

远端设备。无论是采用电池还是主电源,远端设备将一直处于开启状态。

主机复位

在少数情况下,系统会锁定使设备无法关闭,此时,可能需要执行一次主机复位。此操作将不会删除任何已 存储的数据。

- 取下电源模块或电池组,露出 SignalTEK II 内的一个小孔(图 3)。
- 将一枚回形针插入复位孔,并按下内部复位开关。

图 3

• 更换电源模块或电池组。

手持设备控件、指示器和端口

- 1 RJ 45 端口 2 RJ 45 活动
- 2 RJ 45 活动 LED
- 3 RJ 45 链路 LED
- 4¹ 光链路端口 (SFP)
- 5¹ 光链路活动 LED
- 6¹ 光链路链接 LED
- 7 USB 端口
- 8 LCD 彩色显示屏
- 功能键 F1 到 F3 9 10 Escape(退出)键 11 光标和 ENTER (输入)键 12 开关按钮 13^{2} 电源模块 14^{2} 充电器 LED 15² DC 输入接口 16 Autotest(自动测试)按钮
- 17 链路 LED
- 18 状态 LED
- 19 1000 Mb/s 线速 LED
- 20 100 Mb/s 线速 LED
- 21 10 Mb/s 线速 LED
 - 远端 Autotest(自动测试)按钮
- 23 电源 LED

22

¹图 4 第 4、5、6 项 一 仅适用于 SignalTEK II FO。

2图4第13项显示可选的电源模块。

注:两个设备的顶部、底部和左侧相同。

菜单导航

光标和 ENTER (输入)键。箭头光标键采用直观标记,用于 在显示屏上显示的所有菜单图标、设置字段和下拉菜单中移动 突出显示的字段。ENTER (输入)用于选择当前突出显示的 选项。

Escape (退出)键。返回上一屏幕或隐藏下拉菜单的选项。 请注意,当更改了某个设置字段中的值时,如果在按下"有 效"软键*之前*按了 Escape (退出)键,该值将不会保存。

Autotest(自动测试)键。立即执行预先存储的一系列测试。 使用"设置"菜单可轻松更改测试范围。近端和远端设备上的 Autotest(自动测试)键具有相同的功能。

功能键。F1 到 F3 用于选择显示屏下方对应的软键。

图 5

软键

软键沿显示屏下方显示。其功能会发生变更,取决于当前在显示屏上显示的画面。

数据输入

当您导航到并选择一个需要输入值或文本(例如客户名称或 URL)的字段时,显示屏上将显示一个 QWERTY 键盘(图 6)。所有数据都使用 QWERTY 键盘输入。使用测试仪的光 标键移动在键盘上突出显示的键。ENTER(输入)用于选择 当前突出显示的键,该键当前直接显示在键盘上方的文本窗 口中。使用退格键(<~)纠正击键错误。按向上光标键将光 标移到文本窗口内进行编辑。

按 QWERTY 键盘的 "SHIFT" 键切换显示屏的大小写输入 方式。再次按 "SHIFT",显示符号和标点字符。

输入文本或值后,按软键"确认"(F1)。显示屏将返回上一 屏幕,该屏幕已填入所需的数据。您必须按下软键"有效" 保存更改。

入门

按下软键"探测"(F1),近端设备将根据探测到的服务确定操作模式。显示屏将显示一个首页画面,内有四个连接标志中的一个。操作模式共有两种:线缆和以太网。线缆模式有一种连接方式,以太网模式有三种连接方式。

操作模式

线缆

线缆模式使用音频发生器进行接线图测试和线缆路由跟踪。当近端设备连接到铜线缆时(带或不带活动远端),按下软键"探测"(F1),显示线缆模式屏幕上的所有可用选项。连接活动远端后,活动远端及其识别号都将显示在屏幕上(图7)。有关这些选项的完整详细说明,请参见测试菜单说明-线缆模式。

图 7

以太网

图 8

以太网模式用于一系列 IP 和性能测试。在以太网模式中有三种连接方式:

(1) 近端设备和远端设备通过铜或光纤线缆直接连接时,按下软键"探测"(F1)来探测所有可用选项(图 8)。除接线图测试(铜)外,还可测试和测量线缆性能。有关这些选项的完整详细说明,请参见第 24页的测试菜单说明 - 以太网模式。

(2) 近端设备通过铜或光纤线缆连接到活动网络时,按下软键"探测"(F1)来显示所有可用选项 (图 9)。可以执行 IP 测试。有关这些选项的完 整详细说明,请参见第 25 页的*测试菜单说明 – 以太网模式*。

探测到的服务为 PoE (802.3af/at)、ISDN、PBX 和未知。所连接的端口号和 LLDP 电源显示(如 果有的话。显示分配到测试仪的 IPv4 和 IPv6 地 址(如有)。

图 9

图 10

(3) 近端设备和远端设备都通过铜或光纤线缆连接到 活动网络时,按下软键"探测"(F1)来显示所有可 用选项(图 10)。可以执行 IP 测试和性能测试。有 关这些选项的完整详细说明,请参见第 28 页的*测试 菜单说明 - 以太网模式*。

探测到的服务为 PoE (802.3af/at)、ISDN、PBX 和未知。显示分配到测试仪的 IPv4 和 IPv6 地址 (如有)。

端口

从首页屏幕上按下软键"端口"(F2),突出显示 所需的端口并按 ENTER (输入) (图 11)。

勾选复选框,在每次开机时都显示这一屏幕。

注

光纤测试仅在 SignalTEK II FO 上可用。

图 11

可更换的插入件 - RJ-45 插口

要更换损坏或磨损的 RJ-45 插口插入件, 按以下方式操作:

需要的设备: IDEAL 部件号为 150058 的套件 一 包括 1 件工具和 10 件替换插入件。

- 1。切换的 LanXPLORER 关闭。
- 2。卸下电缆。
- 3。小心地将工具直接插入插座。小心 不要将刀具垂直!
- 4。直保持工具用力插入的插座。
- 5。用手指更换一个新的笔直插入到插座中,并用力推它固定到位。

图 12

设置

SignalTEK II 的所有用户定义设置和选项均从"设置"菜单设置。图 12 所示为"设置"菜单的结构图,可用设置和选项的说明见*第* 14 到 17 页。

图 12

设置菜单说明

在首页屏幕,按下软键"设置"(F3)显示"设置" 菜单,如图 13 所示。所有测试、功能和选项的设置 都可以从这里更改和保存。

选择七个图标中的任何一个将出现下面的选项:

突出显示"系统"图标并按 ENTER (输入)访问下列设置和选项:

钥导出的所有报告中。

输入您的姓名或公司名称、地址和电话号码。此处存储的详细信息将出现在通过 USB 密

您可以使用该选项进行以下作业管理:新建作业。查看、编辑或删除现有作业。将作业保存至 USB 密钥。"激活"图标用于选择需要激活的作业。请参见*作业*查看完整的说明。

设置测试仪语言。屏幕显示、导出的结果和报告将以选定的语言显示。

设置省电选项、首选的长度单位以及日期和时间格式。

中。内部时钟可脱离电源模块或电池组独立运行最长一天。

从 U 盘导出设置信息或将设置信息导入 U 盘。如果您希望将设置信息从一台测试仪复制 到另一测试仪,则使用此功能。

设置当前的日期和时间。请注意,日期和时间按测试结果记录,并将显示在导出的结果

对于近端设备,此菜单项方便了从 IDEAL 网站下载和保存到 USB 密钥的软件升级操作。选择升级图标并按屏幕指示操作。要升级远端设备:在设备关闭时插入 USB 密钥,然后按住 AUTOTEST(自动测试)键,同时开启设备。LED 灯将依次亮起,表明正在进行软件升级。升级完成后设备将重启。

提供型号、软件、硬件和固件信息。

提供将所有设置还原为出厂默认值的选项。复位为出厂默认值后,必须将近端和远端设备 配对。请参见*第* 17 页的"一对"。

出厂设置复位将会删除测试仪 存储的所有数据 和配对信息

突出显示"测试"图标,并按 ENTER (输入)进入下列设置和选项:

提供以下两种线缆测试:

设置待测线缆的线缆类型和颜色方案、是否允许交叉连接及 NVP。NVP 预设为 72%, 但可根据待测线缆在 59% 到 89% 的范围内自定义设置。

从三种音频中选择。当第二或第三个测试仪在同一装置上使用时,此操作可以避免干扰。 选择在哪一 pin 或 pin 对上播放音频以实现最佳的结果。

л.

PING4

8由跟踪4

提供以下六种 IP 测试:

设置目标 URL/数字地址(从存储在 v4 目标查找表中的最多 10 个目标中选择,或编辑当前显示的 URL),计数(重复 Ping 的次数 - 1 至 999999),暂停(连续 Ping 之间的间隔 - 10 至 5000 毫秒),长度(Ping 帧净荷中的字节数 - 8 至 1000 字节)。

设置目标 URL/数字地址(从存储在 v4 目标查找表中的最多 10 个目标中选择,或编辑当前显示的 URL),最大跳数(2 至 100),超时(任一跳的中止超时: 2 至 30 秒),使用短超时时间缩短测试时间,或使用长超时时间以到达远端互联网位置。协议(ICMP 或 UDP,视您的网络要求而定)。如果您的网络支持,则选择"名称查找"。如果不需要,则取消选择"名称查找"以缩短测试时间。

选择网络扫描为"本地"(在测试仪自身的 IP 地址范围内扫描)或"自定义"(在配置的 IP 地址范围内扫描)。根据宽范围扫描和短测试时间的重要性比较,设置"扫描范围"。

扫描范围	最大主机数	测试时间
Class C/24	256	短
Class C/20	2048	中
Class B/16	65536	ĸ

建立 IPv6 网络扫描 - 不需要(自动设置)。

根据您的网络选择 PoE 或 PoE Plus。

设置可被探测到的最小功率,以适应装置的需求。

IP 测试继续

PING6

设置目标 URL/数字地址(从存储在 v6 目标查找表中的最多 10 个目标中选择,或编辑当前显示的 URL),

计数(重复 Ping 的次数 - 1 至 999999),

暂停(连续 Ping 之间的间隔 -1 至 5 秒),

长度(Ping 帧净荷中的字节数 - 8 至 1000 字节)。

设置目标 URL/数字地址(从存储在 v6 目标查找表中的最多 10 个目标中选择,或编辑当前显示的 URL),最大跳数(1 至 30),超时(任一跳的中止超时 - 2 至 30 秒),如果您的网络支持,则选择"名称查找"。如果不需要,则取消选择"名称查找"以缩短测试时间。

DATA

提供以下五种性能测试:

勾选 IEEE802.3 复选框,将帧传输失败阈值设置为 0,将测试持续时间设置为 10 秒。不 勾选复选框可根据您的测试手动设置帧传输失败的阈值和持续时间。帧大小永久设置为 1518。帧填充始终固定。选择期望的线速度取决于电缆的类型。

U

呼叫数(设置网络上并发呼叫的预期数量 - 1 至 10000),阈值(帧)(输入可接受的出错帧数 - 0 至 99),持续时间(设置测试持续时间,1秒至 24 小时)。

会话数(设置网络上并发会话的预期数量 - 1 到 500),阈值(帧)(输入可接受的出错 帧数 - 0 到 99),持续时间(设置测试持续时间,1 秒至 24 小时)。

清晰度(设置为 HD 或 SD),流数量(设置网络上并发呼叫的预期数量 - 1 到 70), 阈值(帧)(输入可接受的出错帧数 - 0 到 99),持续时间(设置测试持续时间,1 秒 至 24 小时)。

分辨率(设置为 VGA、720p、1080p、3MP 或 5MP), CODEC(设置为 H.264 或 MJPEG),相机数(设置系统中相机的数量),阈值(帧)(输入可接受的出错帧数 - 0到99)。

选择每次按下近端或远端设备的 Autotest (自动测试) 按钮将会执行的测试。要了解可用 测试的更多信息,请参见图 33。

选择此选项在查找表中输入最多 10 个 IPv4 目标。您在这里保存的目标可在运行 Ping4 和 路由跟踪 4 测试时快速选择。

选择此选项在查找表中输入最多 10 个 IPv6 目标。您在这里保存的目标可在运行 Ping6 和 路由跟踪 6 测试时快速选择。

启用/禁用 IPv4,并根据您网络支持的类型将 IP 地址设置为静态或动态 (DHCP)。如果 选择了"静态",则输入数字地址、子网掩码、网关、DNS1 和 DNS2。

启用/禁用 IPv6,并根据您网络支持的类型选择地址类型,包括静态、无状态自动配置、全状态自动配置 (DCHP)。如果选择了"静态",则输入数字 IP 地址、前缀(64 或 128)、网关、DNS1 和 DNS2。

显示出厂默认的测试仪 MAC 地址。

显示以太网线对之间的偏离。偏离是指千兆以太网四部分信号的到达时间之间的时延 (ns)。由于其测量是与第一个到达的信号相比较,因此至少有一个线对的偏离显示总是 为零。 注

显示的 MAC 和偏离数据仅供参考。

对于连接到光链路端口的 SFP 提供以下信息: 状态 - 可用或未插入、供应商、部件号、接收功率 (μW)、发送功率 (μW)。请参见以下 *支持的 SFP 收发器*。

首次提供时,近端和远端设备已配对。使用其他或替代的远端设备时,或当近端设备已 "复位"为出厂默认设置时,从设置菜单选择"一对"并按下软键"一对"(F1)。当显 示屏上显示"探测到远端设备"消息时,设备已无限期配对。

支持的 SFP 收发器

支持以下 SFP 类型。可以使用其他 SFP 类型,但不保证正常工作。

类型	制造商	部件号	速率	光纤 类型	波长	连接器 类型
SX	Avago	AFBR-5705PZ	1Gb/s	多模	850nm	LC 双工
SX	Apac	LM28-C3S-TI-N-DD	1Gb/s	多模	850nm	LC 双工
LX	Avago	AFCT-5705PZ	1Gb/s	单模	1310nm	LC 双工
LX	Apac	LS38-C3S-TC-N-DD	1Gb/s	单模	1310nm	LC 双工
ZX	Apac	LS48-C3U-TC-N-DD	1Gb/s	单模	1550nm	LC 双工

测试模式

使用 SignalTEK II 的测试包括两种模式:线缆和以太网。

线缆模式

线缆测试包括接线图测试和音频发生器。

未探测到网络或 SignalTEK II 远端设备时,首页屏幕信息栏显示"线缆"。选择"测试"图标时,图 14 菜 单结构图中显示的线缆测试可用。

图 14 测试菜单结构图 - 线缆测试

以太网模式

以太网测试分为三个类别,视近端设备探测到的服务而定。所有可用测试在以下三个菜单结构图中列出

(1) 当 SignalTEK II 远端设备已直接连接,但是未探测到活动网络时,首页屏幕信息栏将显示"以太网"。 选择"测试"图标时,图 15 菜单结构图中显示的以太网测试可用。

(2) 当探测到活动网络,但是未探测到 SignalTEK II 远端设备时,首页屏幕信息栏将显示"以太网";选择"测试"图标时,图 16 中显示的以太网测试可用。

图 16 测试菜单结构图 - 以太网测试 (2)

(3) 当通过活动网络探测到 SignalTEK II 远端设备时,信息栏将显示"以太网"。选择"测试"图标时,图 17 中显示的以太网测试可用。

图 17 测试菜单结构图 - 以太网测试 (3)

测试 - 运行、设置和保存

要选择某个测试,突出显示其图标并按 Enter (输入)。每个测试都有自己的结果屏幕,通过显示屏信息栏中显示的测试名称标识。按软键"运行"(F1)开始测试。测试将使用当前为该测试存储的设置标准。F1 软键变更为"停止",让您能中止测试。

如果您要在测试运行之前更改设置标准,则按软键"设置"(F3)。显示屏将显示一个屏幕,所有测试变量都可在上面更改。按下软键"有效"(F2)保存更改并返回结果屏幕。

对于所有测试,都会在屏幕右上角信息栏的时钟下方显示一个标志。

表明测试尚未运行,测试仪准 备就绪。

表明测试正在进行中。当测试 仪正在探测端口时也会显示此 标志。

如果测试中止,或者当测试已运行且探 测到故障或网络未知或不能达到时,将 会显示。

表明测试已运行,且没有探测到故障。

测试完成时将显示结果;此时软键分别显示为"运行"、"保存"和"设置"。此时您可以保存结果或按 Escape (退出)返回"测试"屏幕,并选择其他测试运行。上一测试的结果不会丢失,除非您按软键"复位"(F1),希望放弃这些结果。这一安排使您能够将一个或多个测试的结果保存到一个单一的"结果"中。要了解"测试结果"的存储方式,请参见*第 30 页*"作业"的描述

按下软键"保存"(F2),"保存结果"屏幕会显示。通过下拉菜单,您可以选择要将测试存储到哪一个作业和结果中。剩余的存储容量以百分比显示。有关测试结果存储的完整描述,请参见*作业*。

测试菜单说明 - 线缆模式

如果从线缆模式首页选择"测试"图标(图 18),将显示可用的测试(图 19)。

图 18

图 19

从菜单中的三个可用测试任选一个后,将出现软键"运行"和"设置":

如果按下软键"运行"(F1),将在当前连接到测试仪 RJ45 端口的线缆上运行一次接线图测试。测试使用的 设置为通过设置菜单"设置">"测试">"线缆测试">"接线图"预设的设置。

运行测试后,显示屏将显示一个结果图示(图 20)以及故障距离指示或者线缆长度。此外,将出现一个 "故障"图标和一个"保存"软键。选择"故障"图标,显示屏将显示一个探测到故障的文本列表,如 图 21 所示。

图 20

图 21

请注意,以上图所示的接线图测试为例,如果在接线图"设置"选项中勾选了"允许交叉线"选项,结果显示将如 图 22 和 图 23 所示。

接线图测试可以无终点运行 – 开放,或者带一个活动远端终点。连接活动远端后,显示屏上将显示一个活动远端的图像并标识其类型。某个测试运行之后,将显示线缆的长度(最长 100m (330ft))。

开放终点时,可能探测到的故障有:

图 24 线对开路

图 25 pin 短路

有活动远端或 SignalTEK II 远端设备终点时,可能探测到的故障有:

图 28 交叉线对

图 27 pin 短路

图 29 串对(串绕)

图 30 桥接短路

图 31 远端短路

对于如 图 20 和 图 21 所示的交叉线故障,所有接线图测试结果都将显示为一个包含"故障"图标的图形。 选择了此图标时,将以列表形式呈现故障信息。

以下指示将出现在活动远端设备上:

- 闪烁绿色 LED 测试合格。
- 闪烁红色 LED 一 测试不合格。
- 琥珀色 LED 探测到 DC 电压大于 12 伏 无法执行测试。

SignalTEK II 可用作一个音频发生器(图 32)。结合一个兼容的音频探针,可以 跟踪线缆的路由。有三种音频可供选择。为实现最佳结果,音频可在八个 pin 的其 中一个 pin 播放,与其他七个 pin 比较,或者在四个 pin 对的其中一个 pin 对播 放。音频随 F1 软键开始和停止,该软键相应地显示为"运行"或"停止"。

按软键"设置"(F3)更改音频和音频播放所在的 pin 或 pin 对。按软键"有效"(F2)使您的更改生效。

图 32

通过设置, SignalTEK II 可在近端或远端设备上的 黄色 Autotest (自动测试) 按钮按下时运行预定范 围的测试。测试范围可以通过选择"设置">"测 试">"自动测试", 勾选选项旁边的复选框设置 (图 33)。按软键"有效"(F2) 使您的更改 生效。

自动测试 日	Myjob		01:54
接线图			
Cable Data			
Ping4			
Ping6			
路由跟踪4			
路由跟踪6			
Netscan		•	
PoE负载			
VoIP Data			
Web Data			
Video Data			
CCTV Data			
	有效		

图 33

"自动测试"运行时(图 34),显示屏根据当前模式列出您在设置时选择的 一系列测试,并显示各个测试的状态。自动测试完成或已停止后,可以选择单 个测试并显示其详细结果。

在线缆模式下,自动测试仅限为"线路图"。

图 34

测试菜单说明 - 以太网模式

当 SignalTEK II 远端设备已直接连接,但是未探测到活动网络时,从首页屏幕选择"测试"图标(图 35),以查看可用测试(图 36)。

图 35

图 36

从菜单中的三个可用测试任选一个后,将出现软键"运行"和"设置":

接线图和自动测试在*测试菜单说明 - 线缆模式*中说明。接线图在以太网模式中运行时,唯一的区别是待测 线缆不是连接到活动远端,而是连接到远端设备或活动网络端口。

线缆	Myjob	[] = 11:59			
	合格 00	:00:10 🧹			
链路速率	1000 M	/lb/s-FD			
帧大小	1,518				
发送Tx	812,74	10			
100%					
接收Rx	812,74	10			
	100%				
出错	0				
	0%				
运行	保存	设置			

图 37

运行线缆性能测试时,背靠背帧被传输到远端设备,再由远端设备将其 环回到近端设备进行检测和计数。

图 37 显示了一次成功线缆测试的结果屏幕。帧大小是固定值,作为信息显示。发送 (Tx) 表示传输的帧数,相关的绿色指示条确认 100% 的帧已发送。由于帧大小(和填充)固定不变,传输的帧数仅取决于测试的持续时间。接收 (Rx)表示接收的帧数,绿色指示条确认已接收 100% 的传输帧。由于全部传输帧都已接收,出错显示为 0,其相关指示条保持无色并显示 0%。当传输和接收的帧数有差异时,出错显示出错的帧数,并根据出错帧数的比例,将指示条部分显示为红色。但是,只要帧阈值未超出,线缆仍将通过测试线率是预料之中的。(请参见*第 16 页*的"设置")。

当探测到活动网络,但是未探测到 SignalTEK II 远端设备时,从首页屏幕选择"测试"图标(图 38), "测试"屏幕(图 39)将会显示。除"自动测试"外(在*测试菜单说明 – 线缆模式*中描述),还可在此运行 POE 和端口检测测试。选择"IP 测试"图标以访问 IP 测试 Ping、路由跟踪和网络扫描(图 40)。

图 40

近端设备连接到端口时,将自动探测 PoE 电 压(如存在)。此外,运行 PoE 测试将应用 电阻负载并测量连接端口的可用功率。 SignalTEK II 识别载电的线对,并显示电压 (V)、电流 (mA)和功率 (W)。如图 41 所示, PoE 测试结果屏幕显示线对 1/2 和线对 3/6 承载了 11 瓦的功率。被测端口可以为最多需 要 11 瓦功率的设备供电。

由于可用功率 ≥ 设置时输入的最小功率值, 测试"合格"。

PoE	MyJob		02:22
状态			
合格			
测试类型	PoE	F	оE
线对	12-3	36 4	15-78
电压V	47	()
电流mA	174	()
功率W	8	0)
运行	保存		设置

图 41

端口检测测试迫使已连接的网络设备端口闪灯。SignalTEK II 还会变更速率,使得 LED 颜色(支持设备上)更便于识别正确的端口。从"测试"屏幕上选择"端口检测"图标,测试随 F1 软键开始和停止,该软键相应地显示为"运行"或"停止"。

Ping 将测试设备和 URL 的可用性并测量其响应时间。

成功测试(进行中和合格)的结果如图 42 所示。图示旁列出了所有可能的结果。

Ping	Myj	ob	12:04
目标			0
169.25	4.250.3	165	
信息	进行中		
发送Tx	6/10		
接收Rx	5		
时延(ms	;)		
Min	0.9		
Avg	1.3		
Мах	3		
停止			设置

Ping		Myjob	12:04
目标	4.2	50.105	
169.25	4.2	50.165	
信息	습 :	格	
发送Tx	10)/10	
接收Rx	10)	
时延(ms	;)		
Min	0.	9	
Avg	1.	1	
Max	3		
运行		保存	设置

图 42

 发送(Tx): 传输的 ping 帧计数: 1 到 999999。

信息:就绪,进行中,合
 格,无响应,未知主机。

- 接收(Rx):成功接收的
 Ping 响应计数:1 到
 999999。
- 时延: 传输 Ping 和接收响应之间的往返时延(单位:ms)。显示为"最小"、 "平均"和"最大"。

 日日日
 日日日
 日日日
 日日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 1
 1
 <th

路由跟踪将显示路由,并测量帧在 IP 网络内的传递时延。

按软键"设置"(F3)输入目标,或者从 v4 或 v6 目标查找表中选择一个目标,并查看或修改测试设置。

路	由跟踪4 MyJob	09:34		
目	标	0		
1	93.254.188.125			
信	息 进行中			
	跳			
1	172.20.0.3			
2	2 86.188.232.129			
3	195.99.99.217			
4	195.99.127.2			
-	停止	设置		

core1-pos	13-2.farad	ay.ukcore.t
IP地址		
195.99.12	7.2	
T1 (ms)	3.0	
T2 (ms)	3.6	
T3 (ms)	3.2	

选择一个单独的跳以查看其统计 数据。

软键"前一屏"(F1)和"下一屏" (F3)用于在各跳之间导航。

每一跳跟踪三次。各次跟踪期间记录的时间显示为 T1、T2 和 T3,单位是 ms。

图 43

网络扫描将报告在扫描范围内探测到的 IPv4 主机和 IPv6 主机的数量。必要时按软键"设 置"(F3)调整扫描设置。

图 44

通过活动网络探测到 SignalTEK II 远端设备时,从首页屏幕选择"测试"图标(图 45),"测试"屏幕(图 46)将会显示。从"测试"屏幕选择"IP 测试"图标,以显示"IP 测试"屏幕(图 47),或选择"数据"图标,以显示"性能测试"屏幕(图 48)。IP 测试的描述请参见第 26 和 27 页。

各性能测试的工作原理如下:(1) 在指定时间内以计算的帧频将帧 传输到远端设备,(2)远端设备将 帧环回,(3)对接收帧进行检测和 计数。

运行性能测试前,会显示以下警告和对话:

本次测试将产生流量负载,可能 会干扰其他网络用户 要继续吗?是/否

选择"是"将继续测试,警告将 不再显示,直至下一次电源循 环。选择"否"不继续测试,警 告在运行另一测试之前将再次 显示。

性能测试如下:

图 45

的出现

PING

保存

图 47 IP 测试

12:02

设署

Myjob

72

ING4

ETSCAN

路由跟踪

复位

图 46

图 48 性能测试

图 49 显示了一次成功 VoIP 测试的结果屏幕。帧大小和帧填充固定不变,仅作为参考信息显示。信息速率 IR (Mb/s) 可变,且取决于您在设置时输入的呼叫数。发送 (Tx)表示传输的帧数,绿色指示条确认100% 的帧已发送。接收 (Rx)表示接收的帧数,绿色指示条确认已接收 100% 的传输帧。由于全部传输帧都已接收,出错显示为 0,其相关指示条保持无色并显示 0%。

VoIP	Myjob	12:12				
合格 00:00:10						
链路速率	1000	Mb/s-FD				
帧大小	218					
IR (Mb/s)	0.9					
发送Tx	5,160	5,160				
100%						
接收Rx	5,160					
	100%					
出错	0					
	0%					
运行	保存	设置				

图 49

图 50 显示了一次成功 Web 测试的结果屏幕。帧大小和帧填充固定不变,仅作为参考信息显示。信息速率 IR (Mb/s) 可变,且取决于您在设置时输入的会话数。发送 (Tx) 表示传输的帧数,绿色指示条确认 100% 的帧已发送。接收 (Rx) 表示接收的帧数,绿色指示条确认已接收 100% 的传输帧。由于全部传输帧都已接收,出错显示为 0,其相关指示条保持无色并显示 0%。

网址	Myjob	12:13
	合格 00	:00:10 🧹
链路速率	1000 M	lb/s-FD
帧大小	1,518	
IR (Mb/s)	45	
发送Tx	37,050)
	100%	
接收Rx	37,050)
	100%	
出错	0	
	0%	
运行	保存	设置

图 50

视频	Myjob	12:14		
	合格 00	:00:10 🗸		
链路速率	1000 1	Mb/s-FD		
帧大小	1,518			
IR (Mb/s)	130	130		
发送Tx	107,04	107,040		
	100%			
接收Rx	107,04	107,040		
	100%			
出错	0			
	0%			
运行	保存	设置		

图 52

图 51 显示了一次成功"视频"测试的结果屏幕。帧大小和帧填充 固定不变,仅作为参考信息显示。信息速率 IR (Mb/s)可变,且取 决于您在设置时输入和选择的流数量和清晰度。发送 (Tx)表示传 输的帧数,绿色指示条确认 100% 的帧已发送。接收 (Rx)表示接 收的帧数,绿色指示条确认已接收 100% 的传输帧。由于全部传输 帧都已接收,出错显示为 0,其相关指示条保持无色并显示 0%。

图 52 显示了一个进行中的 CCTV 性能测试。帧大小和帧填充固定 不变,仅作为参考信息显示。信息速率 IR (Mb/s) 可变,且取决于 您在设置时选择的分辨率、CODEC 和相机数。发送 (Tx) 显示截 至目前已传输 72,371 帧,占本次测试需发送总帧数的 92%。接收 (Rx) 显示仅接收到 62,405 的传输帧(占截至目前总发送帧数的 79%)。出错显示出错(未返回)的帧数(约 12%)。

当出错的帧数≥您在设置时输入的阈值(帧)时,测试不合格。

作业

SignalTEK II 提供一个可存储和组织测试结果和统计数据的系统。测试结果可通过 USB 密钥导出并用于生成报告。

这一存储和组织系统的两个要素是"作业"和"结果"。"作业"是一批结果的命名存储库。"结果"是一 组测试结果。它可以包含保存的一个或多个测试的结果。因此,"作业"可以理解为一个文件夹,"结果" 可以理解为在该文件夹中保存的文件。SignalTEK II 可存储最多 50 个作业,每个作业包含 50 个结果。

在任何时候,作业始终"激活"。任何现有作业都可通过"作业选项"屏幕上的菜单随时激活。当前激活的 作业在显示屏的信息栏中显示。

按下软键"保存"(F2)可保存测试结果。将显示"保存结果"屏幕。在这里,您可以选择要将测试保存到哪一作业中,以及测试结果的前缀和序号。如果您未进行选择,SignalTEK II 默认保存到激活的作业中,并分配下一个序号。

作业、结果和测试结果的存储结构如图 53 所示。

图 53 作业存储结构示例

新建作业时,您可以存储:

- 电缆, 货架, 港口等一般信息。这一信息将出现在从导出的测试结果汇编而成的报告中。
- 一个前缀(与所有关联的结果相关)。它将出现在每个结果编号之前,例如 ABC0001,其中 ABC 是用户定义的前缀,0001 是系统分配的结果编号。前缀必须是字母数字字符串(没有空格或标 点)。为结果编号添加前缀是可选操作。
- 一个作业题目(用户定义)。启用要命名的作业。作业题目必须是字母数字字符串(没有空格或标点)。

使用作业菜单

从首页屏幕选择"作业"图标。显示屏上将显示"作业列表"屏幕(图 54)。"作业列表"屏幕列出了当前存储的所有作业。"测试"列表明保存到每个作业的结果数量。"合格%"列表明在分配到作业的所有结果中,合格测试总数所占的百分比。

激活的作业 -]	Г		- 电源指示器
屏幕标题 ————	114				
	175.	业 Acme	<mark>الالالالا</mark>	09:52	
			17,1144	H1H70	
	1	Acme	U	U	
	2	Myjob	15	53	
	3	Office1	0	0	
	4	Office2	0	0	
	5	Roadrunner	0	0	
l		远坝			

图 54 "作业列表"屏幕

更改激活的作业

在 图 54 所示的"作业列表"屏幕示例中,激活的作业是"Acme",如显示屏的信息栏所示。要更改激活的作业,滚动到所需的作业(例如"My Job"),并按软键"选项"(F2);显示屏将显示"选项"屏幕(图 55)。突出显示"激活"图标并按 ENTER(输入)。

图 55 "选项"屏幕

显示屏将显示一个对话框, 询问:

"设置为当前作业吗"

要 将 激 活 的 作 业 列 表 从 " Acme " 更 改 为 "MyJob",按 ENTER (输入)确认。

显示屏返回"作业列表"屏幕,新激活的作业现在显示在信息栏中。

管理作业

从"作业列表"屏幕选择一个图标以管理作业,操作如下:

新建作业。可存储最多五个作业。数据输入字段有:

- 前缀。输入一个字母数字字符串,该字符串将作为前缀添加到所有存储在新建作 业下的结果前。
- 作业。输入一个字母数字字符串,该字符串将成为新建作业的题目。例如,您客 户的名称。
- 客户详细信息。提供以下信息的字段 公司、地址、城市、省、邮编、电话号码。

新建的作业将自动成为激活的作业。

修改现有作业的任何细节。按下软键"有效"(F2)保存更改。

删除作业及其所有相关结果。选择了"删除"时,将出现"确认删除'作业'吗?"对话框。

作业一旦删除后,将无法还原。

选择要在当前激活的作业。所有测试结果都保存到激活的作业中。这一功能的完整详细信息在*第31页*说明。

选择后,显示屏将显示"测试结果"屏幕。测试结果以列表形式显示,可查看、删除或 导出到 USB 密钥。软键"展示"(F2) 在"状态"(合格/不合格)和测试保存日期和时 间之间转换。

将激活的作业列表导出到 USB。关于如何生成报告的信息在下文详细说明。

要重命名现有的测试在一个特定的工作

- •突出显示的测试,然后按选项(F1)
- •按 ENTER 键,编辑测试的名字,然后点击 OK
- •重命名(F1)

要插入自己的徽标在顶部的报告

- •创建一个文件 logo.png(最大尺寸 768 x 512 像素)上的 USB 键
- •插入 USB 密钥
- •在设置/系统 /拥有者,记者 LOGO (F1)

生成报告

通过 USB 密钥使用导出的测试结果可以生成报告。

要生成报告:

- 将 USB 密钥插入 SignalTEK II USB 端口。
- 从首页屏幕选择"作业"图标。显示屏上将显示"作业列表"屏幕。
- 突出显示要导出的作业并按下软键"选项"(F2)。显示屏将显示"选项"屏幕。
- 突出显示"至USB"图标并按 Enter (输入)。将出现"结果存到USB"对话框。

此外,还可单独导出作业中的某个结果:

- 将 USB 密钥插入 SignalTEK II USB 端口。
- 从首页屏幕选择"作业"图标。显示屏上将显示"作业列表"屏幕。
- 突出显示所需的作业并按 ENTER (输入)。显示屏上显示作业内包含的所有结果。
- 突出显示您需要的结果,并按软键"至USB"(F3)。将出现"结果存到USB"对话框。

测试结果和统计数据现在存储在 USB 密钥上,可作为报告在任何安装有 Microsoft Internet Explorer™ 第 8 版、Mozilla Firefox™ 第 9 版或其他适当浏览器的 PC 上查看。

有两个文件保存到 USB 密钥,测试结果保存为 XML 文件,报告模板保存为 XSLT 文件。打开 XML 文件查 看报告。

规格 - SignalTEK II

下面列出的规格适用于 SignalTEK II FO。SignalTEK II 具有相同的功能,但是仅配备铜缆 (RJ45) 端口。

近端设备

连接器

测试端口 RJ45

用于 - 线缆测试(结合随附的远端设备) - 网络测试(连接到活动网络) *连接器类型* - Samtec Lifejack,带用户可更换触点 *更换周期* - 500 min 位置 - 左侧

光链路

用于-线缆测试(结合随附的远端设备) - 网络测试(连接到活动网络) *连接器类型*-SFP 插座 位置-左侧

系统端口 USB

用于 — 软件升级 — 测试结果传输 *类别* — 主机 *连接器类型* — A USB *类型* — 1.1 位置 — 顶端

电源

*用于*一电池充电

 通过适配器采用主电源供电

 连接器类型 - 2.5mm pin 电源插口

 极性 - 中心 pin 阳性

 电压 - 12v

 电流 - 2 amp

 位置 - 电源模块的底部

 (碱性电池组中不存在)

<u> 控件</u>

开关 按钮

*用于-*电源开启/关闭 位置-正面

功能键

*70*7 F1到F3

用于 – 屏幕定义的功能 位置 – 正面

导航键

光标和 ENTER (输入) *用于 -* 用户界面导航 *位置 -* 正面

<u>控件</u>(接上页)

导航键

 Escape (退出)

 用于 – 返回上一菜单

 位置 – 正面

 Autotest (自动测试)

 用于 – 启动自动测试序列

 位置 – 正面

 复位

 指 田 日 日 位 位

 Autotest (自动测试)

 用 位 日 位 日 位 日 位 日 位 日 日 位 日 日 日 位 田 位 田 位 田 位 田 位 田 田 田 位 田 日 田 田 田 田 田 H H </

<u>显示</u>

屏幕

- LCD
- *用于* 显示设置功能和结果 位置- 正面 *尺寸*- 2.8 英寸对角线 *类型*- QVGA 彩色 像素 - 240 x 320

LED

充电器 LED

- 用于 指示充电状态... 绿色 — 电池正在充电 关闭(已连接充电器) — 电池已充电 绿色闪烁 — 电池不在充电
- 颜色 绿色
- 位置 电源模块底部 (碱性电池组中不存在)

RJ45 链路 LED

用途 - 灯亮表明正常连接 *位置* - 靠近测试仪的 RJ45 插孔,紧挨插孔上方 *颜色* - 绿色

RJ45 活动 LED

- 用途 闪烁表明链路活动
- 位置 靠近测试仪的 RJ45 插孔,紧挨插孔下方 颜色 绿色

光链路链接 LED

- 用途 灯亮表明光链路正常连接
- 位置 靠近测试仪的 SFP 插孔,紧挨插孔的前端
- 颜色 绿色
- 光链路活动 LED
 - *用途* 闪烁表明光链路活动
 - 位置 靠近测试仪的 SFP 插孔,紧挨插孔的后端 颜色 - 绿色

<u>端口</u>

RJ45

固定安装

速度 — 自动协商
双工 - 自动协商
MAC 一 出厂设置

测试

自动模式选择取决于对网络/远端设备的探测: 无链路 (未探测到网络或远端设备) 链路 (探测到活动网络,但是未探测到远端设备) 链路 一远端 (通过网络设备探测到远端设备) 远端 (探测到远端设备,但是未探测到网络) 活动远端 (探测到活动远端 #1 - #12)

链路模式测试 (探测到活动网络,但是未探测到远端设备)

- IPv4 Ping
- IPv6 Ping
- 路由跟踪 v4
- 路由跟踪 v6
- 网络扫描
- PoE/PoE+ 负载
- 端口检测
- 自动
 - IPv4 Ping
 - IPv6 Ping
 - 路由跟踪 v4
 - 路由跟踪 v6
 - 网络扫描
 - PoE/PoE+ 负载

远端模式测试 (探测到远端设备,但是未探测到网络)

- 双端接线图
- 线缆性能
- 自动
 - 双端接线图
 - 线缆性能

链路-远端模式测试(通过网络设备探测到远端设备)

- VoIP 性能
- Web 性能
- 视频性能
- CCTV 性能
- IPv4 Ping
- IPv6 Ping
- 路由跟踪 v4
- 一路由跟踪 v6
- 网络扫描
- PoE/PoE+ 负载
- 端口检测

<u>端口</u>(接上页)

RJ45

测试

- 自动

- VoIP 性能
- Web 性能
- 视频性能
- CCTV 性能
- IPv4 Ping
- IPv6 Ping
- 路由跟踪 v4
- 路由跟踪 v6
- 网络扫描
- PoE/PoE+ 负载

活动远端模式测试(探测到活动远端 #1 - #12)

- 双端接线图
- 音频发生器
- 自动
- 双端接线图

无链路模式测试(未探测到网络或远端设备)

- 单端接线图
- 音频发生器
- 自动
- 单端接线图

服务探测

- PoE/PoE+ (802.3af/at.非思科预标准)

- ISDN
- PBX
- 一未知

光链路

支持的 SFP

支持以下 SFP 类型。可以使用其他 SFP 类型,但不保证正常工作。 SFP 类型 SX

制造商部件号 — Avago AFBR-5705PZ/Apac LM28-C3S-TI-N-DD 速率 — 1Gb/s 光纤类型 — 多模

波长 - 850nm

探测到的服务

连接器类型 – LC 双工

SFP 类型 LX

制造商部件号 - Avago AFCT-5705PZ/Apac LS38-C3S-TC-N-DD *速率* - 1Gb/s *光纤类型* - 単模 *波长* - 1310nm *连接器类型* - LC 双工

SFP 类型 ZX

制造商部件号 — Apac LS48-C3U-TC-N-DD *速率* — 1Gb/s *光纤类型* — 单模 *波长* — 1550nm *连接器类型* — LC 双工

端口(接上页)

光链路

设置

速率	— 1Gb/s
MAC	- 出厂设置

指示

如果安装的 SFP 支持,光功率会在首页屏幕上显示

测试

自动模式选择取决于对网络/远端设备的探测:

无链路	(未探测到网络或远端设备)
链路	(探测到活动网络,但是未探测到远端设备)
链路 - 远端	(通过网络设备探测到远端设备)
远端	(探测到远端设备,但是未探测到网络)
活动远端	(探测到活动远端 #1 - #12)

链路模式测试(探测到活动网络,但是未探测到远端设备)

- IPv4 Ping
- IPv6 Ping
- 路由跟踪 v4
- 路由跟踪 v6
- 网络扫描
- 一 端口检测
- 自动
 - IPv4 Ping
 - IPv6 Ping
 - 路由跟踪 v4
 - 路由跟踪 v6
 - 网络扫描
- *远端模式测试(探测到远端设备,但是未探测到网络)* - 线缆性能
 - 一 自动
 - 线缆性能

链路-远端模式测试(通过网络设备探测到远端设备)

- VoIP 性能
- Web 性能
- 视频性能
- CCTV 性能
- IPv4 Ping
- IPv6 Ping
- 路由跟踪 v4
- 路由跟踪 v6
- 网络扫描
- 端口检测
- 自动
 - VoIP 性能
 - Web 性能
 - 视频性能
 - CCTV 性能
 - IPv4 Ping
 - IPv6 Ping
 - 路由跟踪 v4
 - 路由跟踪 v6
 - 网络扫描

接线图 设置

线缆类型 - Cat3 UTP

 Cat3 STP - Cat5 UTP - Cat5 STP - Cat5e UTP Cat5e STP Cat6 UTP Cat6 STP Cat7 - USOC - ETH S1236 - ETH S1278 - ETH U1236 - ETH U1278 - IND.M12 — COAX RG59 颜色方案 一无 - 568A - 568B - USOC - TERA *允许交叉连接* – 是 - 否 *NVP* - 固定 72% - 自定义 59% - 89% 支持并用图标标识的终点类型 活动远端 - #1 - #12 远端设备 单端接线图测试 故障 - pin 开路 - pin 短路 - 米/英尺(在系统设置中设置) 线对长度 - 范围 100m / 390ft 双端接线图测试 I/D - 活动远端 #/远端图标 活动远端上的指示 - 电压警告(在任何 pin 上 >±10v) - 合格/不合格 远端设备上的指示 - 见下文 故障 - pin 开路 - pin 短路 - 交叉线对 - 串对(串绕) - 桥接短路 - 远端短路 线对长度 - 米/英尺(在系统设置中设置) - 范围 100m / 390ft 时延偏离 - 根据线对 (ns)

<u>线缆测试</u>(接上页)

音频发生器 设置

```
音频 - 3
```

线缆识别号 — 音频应用于 8 个 pin 中的一个 pin, 与其他 7 个 pin 比较 — 音频应用于 4 个线对中的一个线对

测试

使用兼容的音频探针探测到的可听音频

线缆性能测试 设置

IEEE802.3

复选框

已勾选 失败阈值固定为 0 持续时间固定为 10 秒 取消勾选 允许编辑阈值和持续时间

帧大小

固定为 1518 字节

帧填充 固定

持续时间

用户定义(小时:分钟:秒钟,最长为24 小时。默认为 10 秒)

失败阈值

测试

- 背靠背帧在指定时间内传输到远端。

帧数(0至9999。默认为0)

- 远端将帧环回

- 对接收帧进行检测和计数

结果

测试条件 线速 10 Mb/s 100 Mb/s 1000 Mb/s XX I. 全 半 帧大小 帧填充 总体结果 合格(已传输100%帧,已接收100%帧并且未超出失败阈值) 不合格 传输帧 计数(0 至 10¹²) 百分比(用彩色指示条表明0至100%-100%时为绿色,<100%时为红色) 结果 合格 (100%) 不合格 (<100%) (待续)

<u>线缆测试</u>(接上页)

线缆性能测试 结果

接收帧

计数(0 至 10¹²) 百分比(用彩色指示条表明 0 至 100% - 100% 时为绿色, <100% 时为红色) 结果 合格 (100%) 不合格 (<100%)

出错帧

计数(0至10¹²)
 百分比(用彩色指示条表明0至100%。低于阈值时为绿色,≥阈值时为红色)
 结果
 合格(<阈值)
 不合格(≥阈值)

链路-远端性能测试

VoIP 性能测试

固定设置 *帧大小*

固定为 **218** 字节

帧填充 随机

设置

并发呼叫的数量

用户定义。(1 至 10000。默认为 100)

计算并显示同等的信息速率 *持续时间*

用户定义(小时:分钟:秒钟,最长为24 小时。默认为10 秒)

失败阈值

帧数(0 至 99。默认为 0)

测试

- 在指定时间内以计算的帧频将帧传输到远端

- 远端将帧环回

- 对接收帧进行检测和计数

链路 - 远端性能测试(接上页)

VoIP 性能测试 结果 测试条件 线速 10 Mb/s 100 Mb/s 1000 Mb/s 信息速率 Mb/s XL. 全 半 帧大小 帧填充 总体结果 合格(已传输100%帧并且未超出失败阈值) 不合格 传输帧 计数 (0 至 10¹²) 百分比(用彩色指示条表明0至100%-100%时为绿色, <100%时为红色) 结果 合格 (100%) 不合格 (<100%) 接收帧 计数 (0 至 10¹²) 百分比(0至100%) 出错帧 计数 (0 至 10¹²) 百分比(用彩色指示条表明0至100%-100%时为绿色, <100%时为红色) 结果 合格 (100%) 不合格 (>100%)

Web 性能测试

固定设置 *帧大小*

固定为 1518 字节

帧填充 随机

设置

并发会话的数量 用户定义。(1 至 500。默认为 10) 计算并显示同等的信息速率 IR = 1.8 x 会话数 (Mb/s) 计算但不显示同等的帧频 FR = IR/1518/8 (fps)

持续时间

用户定义(小时:分钟:秒钟,最长为24小时。默认为10秒) 失败阈值 帧数(0至99。默认为0)

链路-远端性能测试(接上页)

```
Web <u>性能测试</u>
测试
```

参见 VoIP 性能测试

结果

参见 VoIP 性能测试

视频性能测试

固定设置

固定为 **1518** 字节

帧填充

帧大小

清晰度

设置

SD

随机

```
HD
```

并发视频流的数量

用户定义。(1 至 **70**。默认为 1)

计算并显示同等的信息速率

持续时间

用户定义(小时:分钟:秒钟,最长为24小时。默认为10秒) 失败阈值 帧数(0至99。默认为0)

测试

参见 VoIP 性能测试

结果

参见 VoIP 性能测试

CCTV 性能测试

固定设置 *帧大小*

固定为 1518 字节

帧填充 随机

设置

分辨率

CODEC

VGA 720p 1080p 3MP 5MP H.264 MJPEG

链路-远端性能测试(接上页)

CCTV 性能测试

设置 相机数量

用户定义。(1 至 500。默认为 1) 计算并显示同等的信息速率

持续时间

用户定义(0至99秒。默认为10秒) 失败阈值 帧数(0至99。默认为0)

测试

参见 VoIP 性能测试

结果

参见 VoIP 性能测试

<u>网络设置</u>

IPv4			
	设置		
		寻址	
			一 静态
		数字	一 地址
			- 子网掩码
			— 网关
			– DNS1
			- DNS2
IPv6			
	设置		
		寻址	- 全状态自动配置 (DHCPv6)
			- 无状态自动配置
			- 静态
		数字	- 128 位十六进制 IP 地址
		网络前缀	一 64 位

- 128 位

<u> 网络测试</u>

Pingv4		
设置		
	目标	- 数字地址
		- URL (存储最多 10 个)
	计数	一1到 999999
	暂停	一1到5秒
	长度	一 8 到 1000 字节。
结果		
	信息	一 就绪
		- 进行中
		一 合格
		一 无响应

	发送计数 接收计数 时延 (ms)	 未知主机 1 到 999999 1 到 999999 最小 平均 最大
Pingv6		
设置	目标	- IPv6 地址 - UPI (左伏是名 10 个)
	计数 暂停	- 1 到 999999 - 1 到 5 秒
	长度	- 8 到 1000 字节。
结果		
	信息	 - 就绪 - 进行中 - 合格 - 无响应 - 未知主机
	发送计数 接收计数 时延 (ms)	 1 到 999999 1 到 999999 最小 平均 最大

路由跟踪 v4

设置

目标	- 数字地址
	- URL (存储最多 10 个)
最大跳数	一1到30
超时	- 2 到 30 秒
类型	- ICMP

<i>网络测试</i> (接上页)		
<i>路由跟踪</i>		
	信息	 前绪 进行中 合格 无响应 未知主机
	跳 时延 (ms)	— 数字地址 — t1 — t2 — t3
<i>路由跟踪</i> ∨6		
议 直	目标	 一数字地址 URL(存储最多 10 个)
	最大跳数	一1到30
	超时	- 2 到 30 秒
佐田	类型	- UDP
垣 未	信息	 一就绪 一进行中 一合格 一 无响应
	跳 时延 (ms)	 一 数字地址 一 t1 一 t2 一 t3
网络扫描		
设 <u>置</u>	地址类型	 一本地 一自定义
社田	扫描范围	— 0 (class C /24) — 1 (class C /20) — 2 (class B /16)
绐 百 <u>人</u> 湖	 ─ IPv4 主机总数 ─ IPv6 主机总数 	
<i>ज山位测</i> 测试	序列	ー 关/10/关/100/关/1000 Mb/s (RJ-45) ー 关/开(光链路)

<u>存储</u>

配置

内部存储

配置数量-2(当前和出厂设置)

结果 内部存储

最大作业数量(项目) - 50 *每个作业的最大结果集数量* - 50 *最大结果集总数* - 最大为 2500,取决于执行的测试。

存储的结果

如果有

- 接线图
- 线缆性能
- VoIP 性能
- Web 性能
- 视频性能
- 网络扫描
- PoE 负载
- 信息: 正在监听、已分配、DHCP 失败
- DHCP 或静态
- IPv4 地址
- IPv4 子网掩码
- IPv4 网关
- IPv4 DNS1
- IPv4 DNS2
- 信息: 正在监听、已分配、DHCP 失败
- 全状态自动配置 (DHCPv6) 或无状态自动配置或静态
- ─ IPv6 地址
- IPv6 网络前缀, 64 位或 128 位
- IPv6 链路地址
- IPv6 DNS

<u>存储</u>(接上页)

导出

端口 − USB *格式* − .xml *PC 查看器* − 任何兼容 IE 的浏览器

<u>系统</u>

设置 拥有者 详细信息 - 名称 - 公司 - 地址 - 电话 选项 语言 - English - Français - Deutsch - Español Italiano Português 一 中文 自动关闭 - 禁用 -3分钟 - 10 分钟 - 30 分钟 背光 - 一直开着 -3分钟后亮度降低 50% 长度单位 一米 - 英尺 日期格式 - dd/mm/yy — mm/dd/yy 时间格式 - 12 小时 - 24 小时 软件升级 升级 - 通过 USB

<u>一般信息</u>

日期/时间 内部时钟 *用于一时间标记结果 独立运行 -*在取出电池的情况下最多运行 1 天

---**般信息** (接上页)

电源	*				
物田	电池 <i>支</i> <i>独 充 电</i>		<i>支持的类型</i> 独立运行 充电时间 电池电量指示		原模块(4节5号镍氢电池) 4节5号电池的碱性电池组 小时(仅电源模块) 仅电源模块)
14774	尺寸	长度 宽度	— 175mm — 80mm		
<i>TT</i> 147	重量	高度 设备 电池	- 40mm - 0.22kg - 0.18kg		
<i>圤萈</i>	温度	工作	— 0°C 到 4(D°C	
	相对湿度	贮存 最低 最高	 20°C 至 - 5% - 90% 非炎 	刂70℃ >凝	
认证	EMC	EN 55022:2	006/A1:2007	A2·2003	
	安全	IEC 60950-1	1:2005+A1:20	009/EN 609	50-1:2006+A1:2010

远端设备

<u>连接器</u>

测试端口

RJ45

用于 - 接线图测试(通过随附的近端设备完成)
 - 性能测试(通过随附的近端设备完成)
 连接器类型 - Samtec Lifejack,带用户可更换触点
 更换周期 - 500 分钟
 位置 - 左侧

光链路

*用于*一性能测试(通过随附的近端设备完成) *连接器类型* - SFP 插座 位置 - 左侧

系统端口 USB

<i>用于 - </i> 软件升级
米别 — 主机
大加工机
建接畚尖型 — A
<i>USB </i>
<i>位置</i> — 顶端

连接器(接上页)

系统端口 电源

用于- 电池充电
- 通过适配器采用主电源供电 *连接器类型* - 2.5mm pin 电源插口 *极性* - 中心 pin 阳性
电压 - 12v
电流 - 2 amp
位置 - 电源模块的底部
(碱性电池组中不存在)

<u> 控件</u>

开关

用于- 电源开启/关闭 *位置-* 正面

Autotest(自动测试)

按钮

按钮

用于 – 指示连接的近端设备启动"自动测试" 位置 – 正面

<u>显示</u>

LED

充电器 LED 用于 — 充电状态指示... 绿色 — 电池正在充电 关闭(己连接充电器) — 电池己充电 绿色闪烁 — 电池不在充电

> 颜色 — 绿色 位置 — 电源模块的底部

电源 LED

用于 — 电池和电源状态指示... 绿色 — 电源开启。电池电量充足 红色 — 电源开启。电池电量低,但仍能工作。 关闭 — 电源关闭

颜色 — 红色 / 绿色 位置 — 正面

RJ45 链路 LED

用途 - 灯亮表明正常连接 位置 - 靠近测试仪的 RJ45 插孔,紧挨插孔上方 颜色 - 绿色

RJ45 活动 LED 用途 — 闪烁表明链路活动 位置 — 靠近测试仪的 RJ45 插孔,紧挨插孔下方 颜色 — 绿色

<u>显示</u>(接上页)

光链路链接 LED

用途 — 灯亮表明光链路正常连接 位置 — 靠近测试仪的 SFP 插孔,紧挨插孔的前端 颜色 — 绿色

光链路活动 LED

用途 — 闪烁表明光链路活动 位置 — 靠近测试仪的 SFP 插孔,紧挨插孔的后端 颜色 — 绿色

链路 LED

用途 - 灯亮表明连接到近端设备 位置 - 正面 颜色 - 绿色

状态 LED

用途 — 绿灯闪烁表明正在使用近端设备测试 — 绿色表示测试完成且合格 — 红色表示测试完成但不合格

- 位置一正面
- 颜色 红色 / 绿色

10M LED

用途 - 灯亮表示 10Mb/s 的线速 位置 - 正面 颜色 - 绿色

100M LED

用途 — 灯亮表示 100Mb/s 的线速 位置 — 正面 颜色 — 绿色

1000M LED

用途 - 灯亮表示 1000Mb/s 的线速 位置 - 正面 颜色 - 绿色

<u>端口</u>

RJ45

固定安装

速率 - 自动协商 双工 - 自动协商 MAC - 出厂设置

功能

由连接的近端设备自动控制 使用连接的近端设备进行性能测试 一 重新生成发送到本设备 MAC 地址的全部流量 一 交换源/目标 MAC 使用连接的近端设备进行接线图测试 一 与活动远端相同的功能。

<u>端口</u>(接上页)

光链路

支持的 SFP

支持以下 SFP 类型。可以使用其他 SFP 类型,但不保证正常工作。

SFP 类型 SX

制造商部件号 — Avago AFBR-5705PZ/Apac LM28-C3S-TI-N-DD *速率* — 1Gb/s *光纤类型* — 多模 *波长* — 850nm *连接器类型* — LC 双工

SFP 类型 LX

制造商部件号 — Avago AFCT-5705PZ/Apac LS38-C3S-TC-N-DD *速率* — 1Gb/s *光纤类型* — 单模 *波长* — 1310nm *连接器类型* — LC 双工

SFP 类型 ZX

制造商部件号 — Apac LS48-C3U-TC-N-DD *速率* — 1Gb/s *光纤类型* — 单模 *波长* — 1550nm *连接器类型* — LC 双工

固定安装

速率 - 1Gb/s *MAC* - 出厂设置

功能

使用连接的近端设备进行性能测试 — 重新生成发送到本装置 MAC 地址的全部流量 — 交换源/目标 MAC

软件升级

通过U盘

一般信息

电源 电池

支持的类型	- 标准电源模块(4节5号镍氢电池)
	一 可选带 4 节 5 号电池的碱性电池组
独立运行	- 最长 5 小时(仅电源模块)
充电时间	-3小时(仅电源模块)

一般信息(接上页)

物理

环境

尺寸	长度 宽度 高度	— 175mm — 80mm — 40mm
重量	设备 电池	— 0.22kg — 0.18kg
温度		

工作	- 0°C 到 40°C

贮存	— -20°C 到 70°C
火二十丁	-200 100

相对湿度

最低	5%
最高	90% 非冷凝

议证

EN 55022:2006/A1:2007
EN55024:1998/A1:2001/A2:2003

安全

EMC

IEC 60950-1:2005+A1:2009/EN 60950-1:2006+A1:2010

术语、缩写词和缩略语

术语	描述
10M-HD	10 Mb/s 半双工
10M-FD	10 Mb/s 全双工
100M-HD	100 Mb/s 半双工
100M-FD	100 Mb/s 全双工
1000M-HD	1000 Mb/s 半双工
1000M-FD	1000 Mb/s 全双工
广播帧	从单一发送端到所有相连接收端的通信
CCTV	闭路电视
CRC	循环冗余校验
DHCP	动态主机配置协议
DNS	域名系统
ICMP	互联网控制消息协议
IP	互联网协议
IPv4	互联网协议第4版
静态	操作员手动分配的 IP 地址
动态	使用 DHCP 自动分配的 IP 地址
IPv6	互联网协议第6版
全状态自动配置	使用 DHCPv6 自动分配的 IP 地址
无状态自动配置	使用 ICMPv6 自动分配的 IP 地址
静态	操作员手动分配的 IP 地址
LAN	局域网
MAC	介质访问控制
MDI	介质相关接口
MDIX	介质相关接口交叉
多播帧	单一发送端和多个接收端之间的通信
NVP	信号在线缆中的额定传输速度,表达为与光在真空中速度的比值(百分比)。 可使用线缆制造商的数据或试验性地使用已知的线缆长度确定。
PoE	以太网供电
PoE+	超过 12.95 瓦 IEEE 802.3af 标准限制的以太网供电
QinQ	让多个 VLAN 头插入单帧的以太帧格式
RJ45	8 导体模块化连接器的注册插孔 (Registered Jack) 标准
Rx	接收
SFP	小型封装可热插拔
STP	屏蔽双绞线
Тх	传输
UDP	用户数据报协议
单播帧	单一发送端和单一接收端之间的通信

术语、缩写词和缩略语(接上页)

术语	描述
URL	统一资源定位符
USB	通用串行总线
UTP	非屏蔽双绞线
VoIP	基于互联网协议的语音
XML	可扩展标记语言
XSLT	可扩展样式表转换语言

IDEAL INDUSTRIES LIMITED Stokenchurch House, Oxford Road, Stokenchurch, High Wycombe, Bucks, HP14 3SX, UK. www.idealnwd.com

A subsidiary of IDEAL INDUSTRIES INC.

